Table
geneva.table.Table
Bases: Table
Table in Geneva.
A Table is a Lance dataset
Source code in geneva/table.py
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 | |
get_reference
Source code in geneva/table.py
get_fragments
add
Source code in geneva/table.py
checkout
checkout_latest
add_columns
Add columns or UDF-based columns to the Geneva table.
For UDF columns, this method validates that: - All input columns exist in the table schema - Column types are compatible with UDF type annotations (if present) - RecordBatch UDFs do not have input_columns defined
This early validation helps catch configuration errors before job execution.
Parameters:
-
transforms(dict[str, str | UDF | tuple[UDF, list[str]]]) –The key is the column name to add and the value is a specification of the column type/value.
- If the spec is a string, it is expected to be a datafusion sql expression. (e.g "cast(null as string)")
- If the spec is a UDF, a virtual column is added with input columns inferred from the UDF's argument names.
- If the spec is a tuple, the first element is a UDF and the second element is a list of input column names.
Raises:
-
ValueError–If UDF validation fails (missing columns, type mismatches, etc.)
Warns:
-
UserWarning–If type validation is skipped due to missing type annotations
Examples:
>>> @udf(data_type=pa.int32())
... def double(a: int) -> int:
... return a * 2
>>> table.add_columns({"doubled": double}) # Validates 'a' column exists
Source code in geneva/table.py
refresh
refresh(
*,
where: str | None = None,
src_version: int | None = None,
max_rows_per_fragment: int | None = None,
**kwargs,
) -> None
Refresh the specified materialized view.
Parameters:
-
where(str | None, default:None) –TODO: sql expression filter used to only backfill selected rows
-
src_version(int | None, default:None) –Optional source table version to refresh from. If None (default), uses the latest version of the source table.
-
max_rows_per_fragment(int | None, default:None) –Optional maximum number of rows per destination fragment when adding placeholder rows for new source data. If None, uses LanceDB's default (1 million rows). Use smaller values to control fragment granularity.
Raises:
-
RuntimeError–If attempting to refresh to a different version without stable row IDs enabled on the source table. This is because compaction may have invalidated the __source_row_id values, breaking incremental refresh.
Source code in geneva/table.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 | |
backfill_async
backfill_async(
col_name: str,
*,
udf: UDF | None = None,
where: str | None = None,
_enable_job_tracker_saves: bool = True,
**kwargs,
) -> JobFuture
Backfills the specified column asynchronously.
Returns job future. Call .result() to wait for completion.
Parameters:
-
col_name(str) –Target column name to backfill
-
udf(UDF | None, default:None) –Optionally override the UDF used to backfill the column.
-
where(str | None, default:None) –SQL expression filter used select rows to apply backfills.
-
concurrency–(default = 8) This controls the number of processes that tasks run concurrently. For max throughput, ideally this is larger than the number of nodes in the k8s cluster. This is the number of Ray actor processes are started.
-
intra_applier_concurrency–(default = 1) This controls the number of threads used to execute tasks within a process. Multiplying this times
concurrencyroughly corresponds to the number of cpu's being used. -
commit_granularity–(default = 64) Show a partial result everytime this number of fragments are completed. If None, the entire result is committed at once.
-
read_version–(default = None) The version of the table to read from. If None, the latest version is used.
-
task_shuffle_diversity–(default = 8) ??
-
batch_size–(default = 10240) Legacy alias for checkpoint_size. Prefer checkpoint_size.
-
checkpoint_size–The max number of rows per checkpoint. This influences how often progress and proof of life is presented.
-
task_size–The max number of rows read per concurrent worker task. This increases the parallelism possible with a job. (Not implemented yet).
-
num_frags–(default = None) The number of table fragments to process. If None, process all fragments.
-
_enable_job_tracker_saves(bool, default:True) –(default = False) Experimentally enable persistence of job metrics to the database. When disabled, metrics are tracked in-memory only.
Source code in geneva/table.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 | |
backfill
backfill(
col_name,
*,
udf: UDF | None = None,
where: str | None = None,
concurrency: int = 8,
intra_applier_concurrency: int = 1,
refresh_status_secs: float = 2.0,
_enable_job_tracker_saves: bool = True,
**kwargs,
) -> str
Backfills the specified column.
Returns job_id string
Parameters:
-
col_name–Target column name to backfill
-
udf(UDF | None, default:None) –Optionally override the UDF used to backfill the column.
-
where(str | None, default:None) –SQL expression filter used select rows to apply backfills.
-
concurrency(int, default:8) –(default = 8) This controls the number of processes that tasks run concurrently. For max throughput, ideally this is larger than the number of nodes in the k8s cluster. This is the number of Ray actor processes are started.
-
intra_applier_concurrency(int, default:1) –(default = 1) This controls the number of threads used to execute tasks within a process. Multiplying this times
concurrencyroughly corresponds to the number of cpu's being used. -
commit_granularity–(default = 64) Show a partial result everytime this number of fragments are completed. If None, the entire result is committed at once.
-
read_version–(default = None) The version of the table to read from. If None, the latest version is used.
-
task_shuffle_diversity–(default = 8) ??
-
batch_size–(default = 100) Legacy alias for checkpoint_size. Prefer checkpoint_size. If 0, the batch will be the total number of rows from a fragment.
-
checkpoint_size–The max number of rows per checkpoint. This influences how often progress and proof of life is presented.
-
task_size–The max number of rows read per concurrent worker task. This increases the parallelism possible with a job. (Not implemented yet).
-
num_frags–(default = None) The number of table fragments to process. If None, process all fragments.
-
_enable_job_tracker_saves(bool, default:True) –(default = False) Experimentally enable persistence of job metrics to the database. When disabled, metrics are tracked in-memory only.
Source code in geneva/table.py
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | |
alter_columns
Alter columns in the table. This can change the computed columns' udf
Parameters:
-
alterations(dict[str, Any], default:()) –This is a list of alterations to apply to the table.
-
Example–alter_columns({ "path": "col1", "udf": col1_udf_v2, })` t.alter_columns(b ... { "path": "col1", "udf": col1_udf_v2, }, ... { "path": "col2", "udf": col2_udf})
Source code in geneva/table.py
create_index
create_index(
metric: str = "L2",
num_partitions: int | None = None,
num_sub_vectors: int | None = None,
vector_column_name: str = VECTOR_COLUMN_NAME,
replace: bool = True,
accelerator=None,
index_cache_size=None,
*,
index_type: Literal[
"IVF_FLAT", "IVF_PQ", "IVF_HNSW_SQ", "IVF_HNSW_PQ"
] = "IVF_PQ",
num_bits: int = 8,
max_iterations: int = 50,
sample_rate: int = 256,
m: int = 20,
ef_construction: int = 300,
) -> None
Create Vector Index
Source code in geneva/table.py
create_fts_index
create_fts_index(
field_names: str | list[str],
*,
ordering_field_names: str | list[str] | None = None,
replace: bool = False,
writer_heap_size: int | None = None,
tokenizer_name: str | None = None,
with_position: bool = True,
base_tokenizer: Literal[
"simple", "raw", "whitespace"
] = "simple",
language: str = "English",
max_token_length: int | None = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
**_kwargs,
) -> None
Source code in geneva/table.py
create_scalar_index
create_scalar_index(
column: str,
*,
replace: bool = True,
index_type: Literal[
"BTREE", "BITMAP", "LABEL_LIST"
] = "BTREE",
) -> None
Source code in geneva/table.py
list_versions
cleanup_old_versions
Source code in geneva/table.py
to_batches
to_batches(
batch_size: int | None = None,
) -> Iterator[RecordBatch]
Source code in geneva/table.py
search
search(
query: list
| Array
| ChunkedArray
| ndarray
| None = None,
vector_column_name: str | None = None,
query_type: Literal[
"vector", "fts", "hybrid", "auto"
] = "auto",
ordering_field_name: str | None = None,
fts_columns: str | list[str] | None = None,
) -> GenevaQueryBuilder | LanceQueryBuilder
Source code in geneva/table.py
drop_columns
to_arrow
to_arrow() -> Table
count_rows
update
delete
list_indices
index_stats
optimize
optimize(
*,
cleanup_older_than: timedelta | None = None,
delete_unverified: bool = False,
) -> None
Source code in geneva/table.py
compact_files
restore
take_blobs
take_blobs(indices: list[int] | Array, column: str)
to_lance
uses_v2_manifest_paths
migrate_v2_manifest_paths
stats
take_offsets
take_row_ids
get_errors
get_errors(
job_id: str | None = None,
column_name: str | None = None,
error_type: str | None = None,
) -> list[Any]
Get error records for this table.
Parameters:
-
job_id(str, default:None) –Filter errors by job ID
-
column_name(str, default:None) –Filter errors by column name
-
error_type(str, default:None) –Filter errors by exception type
Returns:
-
list[ErrorRecord]–List of error records matching the filters
Examples:
>>> # Get all errors for this table
>>> errors = table.get_errors()
>>>
>>> # Get errors for a specific job
>>> errors = table.get_errors(job_id="abc123")
>>>
>>> # Get errors for a specific column
>>> errors = table.get_errors(column_name="my_column")
Source code in geneva/table.py
get_failed_row_addresses
Get row addresses for all failed rows in a job.
Parameters:
-
job_id(str) –Job ID to query
-
column_name(str) –Column name to filter by
Returns:
-
list[int]–List of row addresses that failed
Examples:
>>> # Get failed row addresses
>>> failed_rows = table.get_failed_row_addresses(
... job_id="abc123", column_name="my_col"
... )
>>>
>>> # Retry processing only failed rows
>>> row_ids = ','.join(map(str, failed_rows))
>>> table.backfill("my_col", where=f"_rowaddr IN ({row_ids})")