Ollama embeddings
Generate embeddings via the ollama python library. More details:
Parameter | Type | Default Value | Description |
---|---|---|---|
name |
str |
nomic-embed-text |
The name of the model. |
host |
str |
http://localhost:11434 |
The Ollama host to connect to. |
options |
ollama.Options or dict |
None |
Additional model parameters listed in the documentation for the Modelfile such as temperature . |
keep_alive |
float or str |
"5m" |
Controls how long the model will stay loaded into memory following the request. |
ollama_client_kwargs |
dict |
{} |
kwargs that can be past to the ollama.Client . |
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)