Skip to content

Full-text search (Native FTS)

LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.

Note

The Python SDK uses tantivy-based FTS by default, need to pass use_tantivy=False to use native FTS.

Example

Consider that we have a LanceDB table named my_table, whose string column text we want to index and query via keyword search, the FTS index must be created before you can search via keywords.

import lancedb

from lancedb.index import FTS

uri = "data/sample-lancedb"
db = lancedb.connect(uri)

table = db.create_table(
    "my_table_fts",
    data=[
        {"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
        {"vector": [5.9, 26.5], "text": "There are several kittens playing"},
    ],
)

# passing `use_tantivy=False` to use lance FTS index
# `use_tantivy=True` by default
table.create_fts_index("text", use_tantivy=False)
table.search("puppy").limit(10).select(["text"]).to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
import lancedb

from lancedb.index import FTS

uri = "data/sample-lancedb"
async_db = await lancedb.connect_async(uri)

async_tbl = await async_db.create_table(
    "my_table_fts_async",
    data=[
        {"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
        {"vector": [5.9, 26.5], "text": "There are several kittens playing"},
    ],
)

# async API uses our native FTS algorithm
await async_tbl.create_index("text", config=FTS())
await (
    async_tbl.query().nearest_to_text("puppy").select(["text"]).limit(10).to_list()
)
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
# ...
import * as lancedb from "@lancedb/lancedb";
const uri = "data/sample-lancedb"
const db = await lancedb.connect(uri);

const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
await tbl.createIndex("text", {
    config: lancedb.Index.fts(),
});

await tbl
    .search("puppy", "fts")
    .select(["text"])
    .limit(10)
    .toArray();
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db
    .create_table("my_table", initial_data)
    .execute()
    .await?;
tbl
    .create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
    .execute()
    .await?;

tbl
    .query()
    .full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
    .select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
    .limit(10)
    .execute()
    .await?;

It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.

Passing fts_columns="text" if you want to specify the columns to search.

Note

LanceDB automatically searches on the existing FTS index if the input to the search is of type str. If you provide a vector as input, LanceDB will search the ANN index instead.

Tokenization

By default the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are with length greater than 40, and lowercase all words.

Stemming is useful for improving search results by reducing words to their root form, e.g. "running" to "run". LanceDB supports stemming for multiple languages, you can specify the tokenizer name to enable stemming by the pattern tokenizer_name="{language_code}_stem", e.g. en_stem for English.

For example, to enable stemming for English:

table.create_fts_index("text", tokenizer_name="en_stem", replace=True)
await async_tbl.create_index(
    "text", config=FTS(language="English", stem=True, remove_stop_words=True)

the following languages are currently supported.

The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.

For example, for language with accents, you can specify the tokenizer to use ascii_folding to remove accents, e.g. 'é' to 'e':

table.create_fts_index(
    "text",
    use_tantivy=False,
    language="French",
    stem=True,
    ascii_folding=True,
    replace=True,
)
await async_tbl.create_index(
    "text", config=FTS(language="French", stem=True, ascii_folding=True)
)

Filtering

LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.

This can be invoked via the familiar where syntax.

With pre-filtering:

table.search("puppy").limit(10).where("text='foo'", prefilter=True).to_list()
await (
    async_tbl.query()
    .nearest_to_text("puppy")
    .limit(10)
    .where("text='foo'")
    .to_list()
)
await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
table
    .query()
    .full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
    .select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
    .limit(10)
    .only_if("meta='foo'")
    .execute()
    .await?;

With post-filtering:

table.search("puppy").limit(10).where("text='foo'", prefilter=False).to_list()
await (
    async_tbl.query()
    .nearest_to_text("puppy")
    .limit(10)
    .where("text='foo'")
    .postfilter()
    .to_list()
)
await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
table
    .query()
    .full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
    .select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
    .postfilter()
    .limit(10)
    .only_if("meta='foo'")
    .execute()
    .await?;

Phrase queries vs. terms queries

Warn

Lance-based FTS doesn't support queries using boolean operators OR, AND.

For full-text search you can specify either a phrase query like "the old man and the sea", or a terms search query like old man sea. For more details on the terms query syntax, see Tantivy's query parser rules.

To search for a phrase, the index must be created with with_position=True:

table.create_fts_index("text", use_tantivy=False, with_position=True, replace=True)
await async_tbl.create_index("text", config=FTS(with_position=True))

This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.

Incremental indexing

LanceDB supports incremental indexing, which means you can add new records to the table without reindexing the entire table.

This can make the query more efficient, especially when the table is large and the new records are relatively small.

table.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
table.optimize()
await async_tbl.add([{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"}])
await async_tbl.optimize()
await tbl.add([{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" }]);
await tbl.optimize();
let more_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
tbl.add(more_data).execute().await?;
tbl.optimize(OptimizeAction::All).execute().await?;

Note

New data added after creating the FTS index will appear in search results while incremental index is still progress, but with increased latency due to a flat search on the unindexed portion. LanceDB Cloud automates this merging process, minimizing the impact on search speed.