Skip to content

@lancedb/lancedbDocs


@lancedb/lancedb / Table

Class: abstract Table

A Table is a collection of Records in a LanceDB Database.

A Table object is expected to be long lived and reused for multiple operations. Table objects will cache a certain amount of index data in memory. This cache will be freed when the Table is garbage collected. To eagerly free the cache you can call the close method. Once the Table is closed, it cannot be used for any further operations.

Closing a table is optional. It not closed, it will be closed when it is garbage collected.

Constructors

new Table()

new Table(): Table

Returns

Table

Accessors

name

get abstract name(): string

Returns the name of the table

Returns

string

Methods

add()

abstract add(data, options?): Promise<void>

Insert records into this Table.

Parameters

Returns

Promise<void>


addColumns()

abstract addColumns(newColumnTransforms): Promise<void>

Add new columns with defined values.

Parameters

  • newColumnTransforms: AddColumnsSql[] pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table.

Returns

Promise<void>


alterColumns()

abstract alterColumns(columnAlterations): Promise<void>

Alter the name or nullability of columns.

Parameters

  • columnAlterations: ColumnAlteration[] One or more alterations to apply to columns.

Returns

Promise<void>


checkout()

abstract checkout(version): Promise<void>

Checks out a specific version of the table This is an in-place operation.

This allows viewing previous versions of the table. If you wish to keep writing to the dataset starting from an old version, then use the restore function.

Calling this method will set the table into time-travel mode. If you wish to return to standard mode, call checkoutLatest.

Parameters

  • version: number The version to checkout

Returns

Promise<void>

Example

import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
  { vector: [1.1, 0.9], type: "vector" },
]);

console.log(await table.version()); // 1
console.log(table.display());
await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
await table.checkout(1);
console.log(await table.version()); // 2

checkoutLatest()

abstract checkoutLatest(): Promise<void>

Checkout the latest version of the table. This is an in-place operation.

The table will be set back into standard mode, and will track the latest version of the table.

Returns

Promise<void>


close()

abstract close(): void

Close the table, releasing any underlying resources.

It is safe to call this method multiple times.

Any attempt to use the table after it is closed will result in an error.

Returns

void


countRows()

abstract countRows(filter?): Promise<number>

Count the total number of rows in the dataset.

Parameters

  • filter?: string

Returns

Promise<number>


createIndex()

abstract createIndex(column, options?): Promise<void>

Create an index to speed up queries.

Indices can be created on vector columns or scalar columns. Indices on vector columns will speed up vector searches. Indices on scalar columns will speed up filtering (in both vector and non-vector searches)

Parameters

Returns

Promise<void>

Note

We currently don't support custom named indexes, The index name will always be ${column}_idx

Examples

// If the column has a vector (fixed size list) data type then
// an IvfPq vector index will be created.
const table = await conn.openTable("my_table");
await table.createIndex("vector");
// For advanced control over vector index creation you can specify
// the index type and options.
const table = await conn.openTable("my_table");
await table.createIndex("vector", {
  config: lancedb.Index.ivfPq({
    numPartitions: 128,
    numSubVectors: 16,
  }),
});
// Or create a Scalar index
await table.createIndex("my_float_col");

delete()

abstract delete(predicate): Promise<void>

Delete the rows that satisfy the predicate.

Parameters

  • predicate: string

Returns

Promise<void>


display()

abstract display(): string

Return a brief description of the table

Returns

string


dropColumns()

abstract dropColumns(columnNames): Promise<void>

Drop one or more columns from the dataset

This is a metadata-only operation and does not remove the data from the underlying storage. In order to remove the data, you must subsequently call compact_files to rewrite the data without the removed columns and then call cleanup_files to remove the old files.

Parameters

  • columnNames: string[] The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a").

Returns

Promise<void>


dropIndex()

abstract dropIndex(name): Promise<void>

Drop an index from the table.

Parameters

  • name: string The name of the index.

Returns

Promise<void>

Note

This does not delete the index from disk, it just removes it from the table. To delete the index, run Table#optimize after dropping the index.

Use Table.listIndices to find the names of the indices.


indexStats()

abstract indexStats(name): Promise<undefined | IndexStatistics>

List all the stats of a specified index

Parameters

  • name: string The name of the index.

Returns

Promise<undefined | IndexStatistics>

The stats of the index. If the index does not exist, it will return undefined

Use Table.listIndices to find the names of the indices.


isOpen()

abstract isOpen(): boolean

Return true if the table has not been closed

Returns

boolean


listIndices()

abstract listIndices(): Promise<IndexConfig[]>

List all indices that have been created with Table.createIndex

Returns

Promise<IndexConfig[]>


listVersions()

abstract listVersions(): Promise<Version[]>

List all the versions of the table

Returns

Promise<Version[]>


mergeInsert()

abstract mergeInsert(on): MergeInsertBuilder

Parameters

  • on: string | string[]

Returns

MergeInsertBuilder


optimize()

abstract optimize(options?): Promise<OptimizeStats>

Optimize the on-disk data and indices for better performance.

Modeled after VACUUM in PostgreSQL.

Optimization covers three operations:

  • Compaction: Merges small files into larger ones
  • Prune: Removes old versions of the dataset
  • Index: Optimizes the indices, adding new data to existing indices

Experimental API


The optimization process is undergoing active development and may change. Our goal with these changes is to improve the performance of optimization and reduce the complexity.

That being said, it is essential today to run optimize if you want the best performance. It should be stable and safe to use in production, but it our hope that the API may be simplified (or not even need to be called) in the future.

The frequency an application shoudl call optimize is based on the frequency of data modifications. If data is frequently added, deleted, or updated then optimize should be run frequently. A good rule of thumb is to run optimize if you have added or modified 100,000 or more records or run more than 20 data modification operations.

Parameters

Returns

Promise<OptimizeStats>


query()

abstract query(): Query

Create a Query Builder.

Queries allow you to search your existing data. By default the query will return all the data in the table in no particular order. The builder returned by this method can be used to control the query using filtering, vector similarity, sorting, and more.

Note: By default, all columns are returned. For best performance, you should only fetch the columns you need.

When appropriate, various indices and statistics based pruning will be used to accelerate the query.

Returns

Query

A builder that can be used to parameterize the query

Examples

// SQL-style filtering
//
// This query will return up to 1000 rows whose value in the `id` column
// is greater than 5. LanceDb supports a broad set of filtering functions.
for await (const batch of table
  .query()
  .where("id > 1")
  .select(["id"])
  .limit(20)) {
  console.log(batch);
}
// Vector Similarity Search
//
// This example will find the 10 rows whose value in the "vector" column are
// closest to the query vector [1.0, 2.0, 3.0].  If an index has been created
// on the "vector" column then this will perform an ANN search.
//
// The `refineFactor` and `nprobes` methods are used to control the recall /
// latency tradeoff of the search.
for await (const batch of table
  .query()
  .where("id > 1")
  .select(["id"])
  .limit(20)) {
  console.log(batch);
}
// Scan the full dataset
//
// This query will return everything in the table in no particular order.
for await (const batch of table.query()) {
  console.log(batch);
}

restore()

abstract restore(): Promise<void>

Restore the table to the currently checked out version

This operation will fail if checkout has not been called previously

This operation will overwrite the latest version of the table with a previous version. Any changes made since the checked out version will no longer be visible.

Once the operation concludes the table will no longer be in a checked out state and the read_consistency_interval, if any, will apply.

Returns

Promise<void>


schema()

abstract schema(): Promise<Schema<any>>

Get the schema of the table.

Returns

Promise<Schema<any>>


abstract search(
   query,
   queryType?,
   ftsColumns?): VectorQuery | Query

Create a search query to find the nearest neighbors of the given query

Parameters

  • query: string | IntoVector the query, a vector or string

  • queryType?: string the type of the query, "vector", "fts", or "auto"

  • ftsColumns?: string | string[] the columns to search in for full text search for now, only one column can be searched at a time. when "auto" is used, if the query is a string and an embedding function is defined, it will be treated as a vector query if the query is a string and no embedding function is defined, it will be treated as a full text search query

Returns

VectorQuery | Query


toArrow()

abstract toArrow(): Promise<Table<any>>

Return the table as an arrow table

Returns

Promise<Table<any>>


update()

update(opts)

abstract update(opts): Promise<void>

Update existing records in the Table

Parameters
Returns

Promise<void>

Example
table.update({where:"x = 2", values:{"vector": [10, 10]}})

update(opts)

abstract update(opts): Promise<void>

Update existing records in the Table

Parameters
Returns

Promise<void>

Example
table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})

update(updates, options)

abstract update(updates, options?): Promise<void>

Update existing records in the Table

An update operation can be used to adjust existing values. Use the returned builder to specify which columns to update. The new value can be a literal value (e.g. replacing nulls with some default value) or an expression applied to the old value (e.g. incrementing a value)

An optional condition can be specified (e.g. "only update if the old value is 0")

Note: if your condition is something like "some_id_column == 7" and you are updating many rows (with different ids) then you will get better performance with a single [merge_insert] call instead of repeatedly calilng this method.

Parameters
  • updates: Record<string, string> | Map<string, string> the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1")

  • options?: Partial<UpdateOptions> additional options to control the update behavior

Returns

Promise<void>


vectorSearch()

abstract vectorSearch(vector): VectorQuery

Search the table with a given query vector.

This is a convenience method for preparing a vector query and is the same thing as calling nearestTo on the builder returned by query.

Parameters

  • vector: IntoVector

Returns

VectorQuery

See

Query#nearestTo for more details.


version()

abstract version(): Promise<number>

Retrieve the version of the table

Returns

Promise<number>


parseTableData()

static parseTableData(
   data,
   options?,
   streaming?): Promise<object>

Parameters

  • data: TableLike | Record<string, unknown>[]

  • options?: Partial<CreateTableOptions>

  • streaming?: boolean = false

Returns

Promise<object>

buf
buf: Buffer;
mode
mode: string;