@lancedb/lancedb • Docs
@lancedb/lancedb / embedding / EmbeddingFunction
Class: abstract EmbeddingFunction<T, M>¶
An embedding function that automatically creates vector representation for a given column.
It's important subclasses pass the original options to the super constructor
and then pass those options to resolveVariables to resolve any variables before
using them.
Example¶
class MyEmbeddingFunction extends EmbeddingFunction {
constructor(options: {model: string, timeout: number}) {
super(optionsRaw);
const options = this.resolveVariables(optionsRaw);
this.model = options.model;
this.timeout = options.timeout;
}
}
Extended by¶
Type Parameters¶
• T = any
• M extends FunctionOptions = FunctionOptions
Constructors¶
new EmbeddingFunction()¶
Returns¶
EmbeddingFunction<T, M>
Methods¶
computeQueryEmbeddings()¶
Compute the embeddings for a single query
Parameters¶
- data:
T
Returns¶
Promise<number[] | Float32Array | Float64Array>
computeSourceEmbeddings()¶
Creates a vector representation for the given values.
Parameters¶
- data:
T[]
Returns¶
Promise<number | Float32Array[] | Float64Array[]>
embeddingDataType()¶
The datatype of the embeddings
Returns¶
Float<Floats>
getSensitiveKeys()¶
Provide a list of keys in the function options that should be treated as sensitive. If users pass raw values for these keys, they will be rejected.
Returns¶
string[]
init()?¶
Optionally load any resources needed for the embedding function.
This method is called after the embedding function has been initialized but before any embeddings are computed. It is useful for loading local models or other resources that are needed for the embedding function to work.
Returns¶
Promise<void>
ndims()¶
The number of dimensions of the embeddings
Returns¶
undefined | number
resolveVariables()¶
Apply variables to the config.
Parameters¶
- config:
Partial<M>
Returns¶
Partial<M>
sourceField()¶
sourceField(optionsOrDatatype): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
sourceField is used in combination with LanceSchema to provide a declarative data model
Parameters¶
- optionsOrDatatype:
DataType<Type,any> |Partial<FieldOptions<DataType<Type,any>>> The options for the field or the datatype
Returns¶
[DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
See¶
toJSON()¶
Get the original arguments to the constructor, to serialize them so they can be used to recreate the embedding function later.
Returns¶
Record<string, any>
vectorField()¶
vectorField(optionsOrDatatype?): [DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]
vectorField is used in combination with LanceSchema to provide a declarative data model
Parameters¶
- optionsOrDatatype?:
DataType<Type,any> |Partial<FieldOptions<DataType<Type,any>>> The options for the field
Returns¶
[DataType<Type, any>, Map<string, EmbeddingFunction<any, FunctionOptions>>]