AnswersDotAI Rerankers
This integration uses AnswersDotAI's rerankers to rerank the search results, providing a lightweight, low-dependency, unified API to use all common reranking and cross-encoder models.
Note
Supported Query Types: Hybrid, Vector, FTS
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import AnswerdotaiRerankers
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = AnswerdotaiRerankers()
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
Accepted Arguments
Argument | Type | Default | Description |
---|---|---|---|
model_type |
str |
"colbert" |
The type of model to use. Supported model types can be found here: https://github.com/AnswerDotAI/rerankers. |
model_name |
str |
"answerdotai/answerai-colbert-small-v1" |
The name of the reranker model to use. |
column |
str |
"text" |
The name of the column to use as input to the cross encoder model. |
return_score |
str | "relevance" |
Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type. |
Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
Hybrid Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Results only have the _relevance_score column. |
all |
β Not Supported | Results have vector(_distance ) and FTS(score ) along with Hybrid Search score(_relevance_score ). |
Vector Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Results only have the _relevance_score column. |
all |
β Supported | Results have vector(_distance ) along with Hybrid Search score(_relevance_score ). |
FTS Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Results only have the _relevance_score column. |
all |
β Supported | Results have FTS(score ) along with Hybrid Search score(_relevance_score ). |