Skip to content

AnswersDotAI Rerankers

This integration uses AnswersDotAI's rerankers to rerank the search results, providing a lightweight, low-dependency, unified API to use all common reranking and cross-encoder models.

Note

Supported Query Types: Hybrid, Vector, FTS

import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import AnswerdotaiRerankers

embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")

class Schema(LanceModel):
    text: str = embedder.SourceField()
    vector: Vector(embedder.ndims()) = embedder.VectorField()

data = [
    {"text": "hello world"},
    {"text": "goodbye world"}
    ]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = AnswerdotaiRerankers()

# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list() 

# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()

# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()

Accepted Arguments

Argument Type Default Description
model_type str "colbert" The type of model to use. Supported model types can be found here: https://github.com/AnswerDotAI/rerankers.
model_name str "answerdotai/answerai-colbert-small-v1" The name of the reranker model to use.
column str "text" The name of the column to use as input to the cross encoder model.
return_score str "relevance" Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type.

Supported Scores for each query type

You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:

return_score Status Description
relevance βœ… Supported Results only have the _relevance_score column.
all ❌ Not Supported Results have vector(_distance) and FTS(score) along with Hybrid Search score(_relevance_score).
return_score Status Description
relevance βœ… Supported Results only have the _relevance_score column.
all βœ… Supported Results have vector(_distance) along with Hybrid Search score(_relevance_score).
return_score Status Description
relevance βœ… Supported Results only have the _relevance_score column.
all βœ… Supported Results have FTS(score) along with Hybrid Search score(_relevance_score).