Skip to content

Cohere Reranker

This reranker uses the Cohere API to rerank the search results. You can use this reranker by passing CohereReranker() to the rerank() method. Note that you'll either need to set the COHERE_API_KEY environment variable or pass the api_key argument to use this reranker.

Note

Supported Query Types: Hybrid, Vector, FTS

pip install cohere
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import CohereReranker

embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")

class Schema(LanceModel):
    text: str = embedder.SourceField()
    vector: Vector(embedder.ndims()) = embedder.VectorField()

data = [
    {"text": "hello world"},
    {"text": "goodbye world"}
    ]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = CohereReranker(api_key="key")

# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list() 

# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()

# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()

Accepted Arguments

Argument Type Default Description
model_name str "rerank-english-v2.0" The name of the reranker model to use. Available cohere models are: rerank-english-v2.0, rerank-multilingual-v2.0
column str "text" The name of the column to use as input to the cross encoder model.
top_n str None The number of results to return. If None, will return all results.
api_key str None The API key for the Cohere API. If not provided, the COHERE_API_KEY environment variable is used.
return_score str "relevance" Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type

Supported Scores for each query type

You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:

return_score Status Description
relevance βœ… Supported Results only have the _relevance_score column
all ❌ Not Supported Results have vector(_distance) and FTS(score) along with Hybrid Search score(_relevance_score)
return_score Status Description
relevance βœ… Supported Results only have the _relevance_score column
all βœ… Supported Results have vector(_distance) along with Hybrid Search score(_relevance_score)
return_score Status Description
relevance βœ… Supported Results only have the _relevance_score column
all βœ… Supported Results have FTS(score) along with Hybrid Search score(_relevance_score)