ColBERT Reranker
This re-ranker uses ColBERT model to rerank the search results. You can use this re-ranker by passing ColbertReranker()
to the rerank()
method.
Note
Supported Query Types: Hybrid, Vector, FTS
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import ColbertReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = ColbertReranker()
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
Accepted Arguments
Argument | Type | Default | Description |
---|---|---|---|
model_name |
str |
"colbert-ir/colbertv2.0" |
The name of the reranker model to use. |
column |
str |
"text" |
The name of the column to use as input to the cross encoder model. |
device |
str |
None |
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu". |
return_score |
str | "relevance" |
Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type |
Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
Hybrid Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Returns only have the _relevance_score column |
all |
β Not Supported | Returns have vector(_distance ) and FTS(score ) along with Hybrid Search score(_relevance_score ) |
Vector Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Returns only have the _relevance_score column |
all |
β Supported | Returns have vector(_distance ) along with Hybrid Search score(_relevance_score ) |
FTS Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Returns only have the _relevance_score column |
all |
β Supported | Returns have FTS(score ) along with Hybrid Search score(_relevance_score ) |