Linear Combination Reranker
Note
This is deprecated. It is recommended to use the RRFReranker
instead, if you want to use a score-based reranker.
The Linear Combination Reranker combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified, and defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
Note
Supported Query Types: Hybrid
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import LinearCombinationReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = LinearCombinationReranker()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
Accepted Arguments
Argument | Type | Default | Description |
---|---|---|---|
weight |
float |
0.7 |
The weight to use for the semantic search score. The weight for the full-text search score is 1 - weights . |
return_score |
str | "relevance" |
Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score. |
Supported Scores for each query type
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
Hybrid Search
return_score |
Status | Description |
---|---|---|
relevance |
β Supported | Results only have the _relevance_score column |
all |
β Supported | Results have vector(_distance ) and FTS(score ) along with Hybrid Search score(_distance ) |