logo
LanceDB
Overview
Initializing search
    lancedb/lancedb
    • Home
    • Quick start
    • Concepts
    • Guides
    • Managing Embeddings
    • Integrations
    • Examples
    • Studies
    • API reference
    lancedb/lancedb
      • LanceDB
      • πŸƒπŸΌβ€β™‚οΈ Quick start
        • Vector search
          • IVFPQ
          • HNSW
        • Storage
        • Data management
        • Working with tables
        • Building a vector index
        • Vector Search
        • Full-text search (native)
        • Full-text search (tantivy-based)
        • Building a scalar index
          • Overview
          • Comparing Rerankers
          • Airbnb financial data example
          • Overview
          • Example
          • Vanilla RAG
          • Multi-head RAG
          • Corrective RAG
          • Agentic RAG
          • Graph RAG
          • Self RAG
          • Adaptive RAG
          • SFR RAG
            • HyDE
            • FLARE
          • Quickstart
          • Cohere Reranker
          • Linear Combination Reranker
          • Reciprocal Rank Fusion Reranker
          • Cross Encoder Reranker
          • ColBERT Reranker
          • Jina Reranker
          • OpenAI Reranker
          • AnswerDotAi Rerankers
          • Voyage AI Rerankers
          • Building Custom Rerankers
          • Example
        • Filtering
          • sync API
          • async API
        • Configuring Storage
        • Migration Guide
          • Choosing right query type
          • Reranking
          • Embedding fine-tuning
        • Understand Embeddings
        • Get Started
        • Embedding functions
          • Overview
            • Sentence Transformers
            • Huggingface Embedding Models
            • Ollama Embeddings
            • OpenAI Embeddings
            • Instructor Embeddings
            • Gemini Embeddings
            • Cohere Embeddings
            • Jina Embeddings
            • AWS Bedrock Text Embedding Functions
            • IBM watsonx.ai Embeddings
            • Voyage AI Embeddings
            • OpenClip embeddings
            • Imagebind embeddings
            • Jina Embeddings
        • User-defined embedding functions
        • Variables and secrets
        • Example: Multi-lingual semantic search
        • Example: MultiModal CLIP Embeddings
        • Tools and data formats
        • Pandas and PyArrow
        • Polars
        • DuckDB
          • LangChain πŸ”—
          • LangChain demo
          • LangChain JS/TS πŸ”—
          • LlamaIndex docs
          • LlamaIndex demo
        • Pydantic
        • Voxel51
        • PromptTools
        • dlt
        • phidata
        • Genkit
        • Overview
          • Overview
          • Build From Scratch
          • Multimodal
          • Rag
          • Vector Search
          • Chatbot
          • Evaluation
          • AI Agent
          • Recommender System
            • Serverless QA Bot with S3 and Lambda
            • Serverless QA Bot with Modal
          • Overview
          • Serverless Website Chatbot
          • YouTube Transcript Search
          • TransformersJS Embedding Search
          • Overview
        • β†—Improve retrievers with hybrid search and reranking
      • πŸ’­ FAQs
      • πŸ” Troubleshooting
        • 🐍 Python
        • πŸ‘Ύ JavaScript (vectordb)
        • πŸ‘Ύ JavaScript (lancedb)
        • πŸ¦€ Rust
    • Quick start
      • Vector search
        • IVFPQ
        • HNSW
      • Storage
      • Data management
      • Working with tables
      • Building an ANN index
      • Vector Search
      • Full-text search (native)
      • Full-text search (tantivy-based)
      • Building a scalar index
        • Overview
        • Comparing Rerankers
        • Example - Airbnb financial data search
        • Overview
        • Multivector Search: Efficient Document Retrieval with ColPali and LanceDB
        • Vanilla RAG
        • Multi-head RAG
        • Corrective RAG
        • Agentic RAG
        • Graph RAG
        • Self RAG
        • Adaptive RAG
        • SFR RAG
          • HyDE
          • FLARE
        • Quickstart
        • Cohere Reranker
        • Linear Combination Reranker
        • Reciprocal Rank Fusion Reranker
        • Cross Encoder Reranker
        • ColBERT Reranker
        • Jina Reranker
        • OpenAI Reranker
        • AnswerDotAi Rerankers
        • Building Custom Rerankers
        • Example - Improve Retrievers using Rerankers & Hybrid search
      • Filtering
        • Sync API
        • Async API
      • Configuring Storage
      • Migration Guide
        • Choosing right query type
        • Reranking
        • Embedding fine-tuning
      • Understand Embeddings
      • Get Started
      • Embedding functions
        • Overview
          • Sentence Transformers
          • Huggingface Embedding Models
          • Ollama Embeddings
          • OpenAI Embeddings
          • Instructor Embeddings
          • Gemini Embeddings
          • Cohere Embeddings
          • Jina Embeddings
          • AWS Bedrock Text Embedding Functions
          • IBM watsonx.ai Embeddings
          • OpenClip embeddings
          • Imagebind embeddings
          • Jina Embeddings
      • User-defined embedding functions
      • Variables and secrets
      • Example - Multi-lingual semantic search
      • Example - MultiModal CLIP Embeddings
      • Overview
      • Pandas and PyArrow
      • Polars
      • DuckDB
      • LangChain πŸ¦œοΈπŸ”—β†—
      • LangChain.js πŸ¦œοΈπŸ”—β†—
      • LlamaIndex πŸ¦™β†—
      • Pydantic
      • Voxel51
      • PromptTools
      • dlt
      • phidata
      • Genkit
      • Example projects and recipes
        • Overview
        • Build From Scratch
        • Multimodal
        • Rag
        • Vector Search
        • Chatbot
        • Evaluation
        • AI Agent
        • Recommender System
          • Serverless QA Bot with S3 and Lambda
          • Serverless QA Bot with Modal
        • Overview
        • Serverless Website Chatbot
        • YouTube Transcript Search
        • TransformersJS Embedding Search
        • Overview
      • Overview
      • β†—Improve retrievers with hybrid search and reranking
      • Overview
      • Python
      • Javascript (vectordb)
      • Javascript (lancedb)
      • Rust

    Overview

    This is a list of benchmarks and reports we've worked on at LanceDB. Some of these are continuously updated, while others are one-off reports.

    • Improve retrievers with hybrid search and reranking
    Previous
    Overview
    Next
    Overview
    Made with Material for MkDocs