Skip to content

Version Control & Reproducibility in LanceDB

LanceDB redefines data management for AI/ML workflows with built-in, automatic versioning powered by the Lance columnar format. Every table mutation—appends, updates, deletions, or schema changes — is tracked with zero configuration, enabling:

  • Time-Travel Debugging: Pinpoint production issues by querying historical table states.
  • Atomic Rollbacks: Revert terabyte-scale datasets to any prior version in seconds.
  • ML Reproducibility: Exactly reproduce training snapshots (vectors + metadata).
  • Branching Workflows: Conduct A/B tests on embeddings/models via lightweight table clones.

Check a Specific Table Version

import lancedb
import pandas as pd
import numpy as np
import pyarrow as pa
from sentence_transformers import SentenceTransformer

# Connect to LanceDB
db = lancedb.connect(
  uri="db://your-project-slug",
  api_key="your-api-key",
  region="us-east-1"
)

# Create a table with initial data
table_name = "quotes_versioning_example"
data = [
    {"id": 1, "author": "Richard", "quote": "Wubba Lubba Dub Dub!"},
    {"id": 2, "author": "Morty", "quote": "Rick, what's going on?"},
    {
        "id": 3,
        "author": "Richard",
        "quote": "I turned myself into a pickle, Morty!",
    },
]

# Define schema
schema = pa.schema(
    [
        pa.field("id", pa.int64()),
        pa.field("author", pa.string()),
        pa.field("quote", pa.string()),
    ]
)

table = db.create_table(table_name, data, schema=schema, mode="overwrite")

# View the initial version
versions = table.list_versions()
print(f"Number of versions after creation: {len(versions)}")
print(f"Current version: {table.version}")
import * as lancedb from "@lancedb/lancedb";
import {
  Schema,
  Field,
  Utf8,
  Int64,
} from "apache-arrow";

// Connect to LanceDB
const db = await lancedb.connect({
  uri: "db://your-project-slug",
  apiKey: "your-api-key",
  region: "us-east-1"
});

// Create a table with initial data
const tableName = "quotes_versioning_example-ts";

const data = [
  {
    id: 1,
    author: "Richard",
    quote: "Wubba Lubba Dub Dub!",
  },
  {
    id: 2,
    author: "Morty",
    quote: "Rick, what's going on?",
  },
  {
    id: 3,
    author: "Richard",
    quote: "I turned myself into a pickle, Morty!",
  },
];

const schema = new Schema([
  new Field("author", new Utf8()),
  new Field("quote", new Utf8()),
  new Field("id", new Int64()),
]);

const table = await db.createTable(tableName, data, {
  schema,
  mode: "overwrite",
});

// View the initial version
const versions = await table.listVersions();
const versionCountInitial = versions.length;
const initialVersion = await table.version();
console.log(`Number of versions after creation: ${versionCountInitial}`);
console.log(`Current version: ${initialVersion}`);

Modifying Data

When you modify data through operations like update or delete, LanceDB automatically creates new versions.

# Add more data
# Make changes to the table
table.update(where="author='Richard'", values={"author": "Richard Daniel Sanchez"})
rows_after_update = table.count_rows()
print(f"Number of rows after update: {rows_after_update}")

# Add more data
more_data = [
    {
        "id": 4,
        "author": "Richard Daniel Sanchez",
        "quote": "That's the way the news goes!",
    },
    {"id": 5, "author": "Morty", "quote": "Aww geez, Rick!"},
]
table.add(more_data)

# Check versions after modifications
versions = table.list_versions()
version_count_after_mod = len(versions)
version_after_mod = table.version
print(f"Number of versions after modifications: {version_count_after_mod}")
print(f"Current version: {version_after_mod}")
  // Make changes to the table
  await table.update({
    where: "author='Richard'",
    values: { author: "Richard Daniel Sanchez" },
  });
  const rowsAfterUpdate = await table.countRows();
  console.log(`Number of rows after update: ${rowsAfterUpdate}`);
  results["rows_after_update"] = rowsAfterUpdate;

  // Add more data
  const moreData = [
    {
      id: 4,
      author: "Richard Daniel Sanchez",
      quote: "That's the way the news goes!",
    },
    {
      id: 5,
      author: "Morty",
      quote: "Aww geez, Rick!",
    },
  ];
  await table.add(moreData);

  // Check versions after modifications
  const versionsAfterMod = await table.listVersions();
  const versionCountAfterMod = versionsAfterMod.length;
  const versionAfterMod = await table.version();
  console.log(`Number of versions after modifications: ${versionCountAfterMod}`);
  console.log(`Current version: ${versionAfterMod}`);

Tracking Changes in Schema

LanceDB's versioning system automatically tracks every schema modification. This is critical when handling evolving embedding models. For example, adding a new vector_minilm column creates a fresh version, enabling seamless A/B testing between embedding generations without recreating the table.

import pyarrow as pa

# Get data from table
df = table.search().limit(5).to_pandas()

# Let's use "all-MiniLM-L6-v2" model to embed the quotes
model = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")

# Generate embeddings for each quote and pair with IDs
vectors = model.encode(
    df["quote"].tolist(), convert_to_numpy=True, normalize_embeddings=True
)
vector_dim = vectors[0].shape[0]
print(f"Vector dimension: {vector_dim}")

# Add IDs to vectors array with proper column names
vectors_with_ids = [
    {"id": i + 1, "vector_minilm": vec.tolist()} for i, vec in enumerate(vectors)
]

# Add vector column and merge data
table.add_columns(
  {"vector_minilm": f"arrow_cast(NULL, 'FixedSizeList({vector_dim}, Float32)')"}
)

table.merge_insert(
  "id"
).when_matched_update_all().when_not_matched_insert_all().execute(vectors_with_ids)

# Check versions after schema change
versions = table.list_versions()
version_count_after_embed = len(versions)
version_after_embed = table.version
print(f"Number of versions after adding embeddings: {version_count_after_embed}")
print(f"Current version: {version_after_embed}")

# Verify the schema change
# The table should now include a vector_minilm column containing
# embeddings generated by the all-MiniLM-L6-v2 model
print(table.schema)
// Get data from table
const df = await table.query().limit(5).toArray()

let vectorDim = 0;
try {
  // Let's use all-MiniLM-L6-v2 model to embed the quotes
  console.log("Generating embeddings with transformers...");
  const { pipeline } = await import("@xenova/transformers");
  const extractor = await pipeline(
    "feature-extraction",
    "Xenova/all-MiniLM-L6-v2",
  );

  // Generate embeddings for all quotes
  const quotes = df.map((row) => row.quote);
  const outputs = await Promise.all(
    quotes.map((quote) =>
      extractor(quote, {
        pooling: "mean",
        normalize: true,
      }),
    ),
  );
  const embeddings = outputs.map((output) => Array.from(output.data));
  vectorDim = embeddings[0].length;
  console.log(`Vector dimension: ${vectorDim}`);

  // Create embedding_with_id for all quotes
  const embedding_with_id = df.map((row, i) => ({
    id: row.id,
    vector_minilm: embeddings[i],
  }));

  // Add the vector column to the table
  await table.addColumns([
    {
      name: "vector_minilm",
      valueSql: `arrow_cast(NULL, 'FixedSizeList(${vectorDim}, Float32)')`,
    },
  ]);

  // Update all rows with their embeddings
  await table
    .mergeInsert("id")
    .whenMatchedUpdateAll()
    .whenNotMatchedInsertAll()
    .execute(embedding_with_id);
} catch (error) {
  console.log(
    "Failed to load transformers, using dummy vectors instead:",
    error,
  );
  // Create dummy embeddings for all quotes
  const dummyEmbeddings = df.map(() => Array(vectorDim).fill(10));
  const embedding_with_id = df.map((row, i) => ({
    id: row.id,
    vector: dummyEmbeddings[i],
  }));
  await table
    .mergeInsert("id")
    .whenMatchedUpdateAll()
    .whenNotMatchedInsertAll()
    .execute(embedding_with_id);
}

// Check versions after embedding addition
const versionsAfterEmbed = await table.listVersions();
const versionCountAfterEmbed = versionsAfterEmbed.length;
const versionAfterEmbed = await table.version();
console.log(
  `Number of versions after adding embeddings: ${versionCountAfterEmbed}`,
);
console.log(`Current version: ${versionAfterEmbed}`);

// Verify the schema change
// The table should now include a vector_minilm column containing
// embeddings generated by the all-MiniLM-L6-v2 model
console.log(await table.schema())

Rollback to Previous Versions

LanceDB supports fast rollbacks to any previous version without data duplication.

# Let's see all versions
versions = table.list_versions()
for v in versions:
    print(f"Version {v['version']}, created at {v['timestamp']}")

# Let's roll back to before we added the vector column
# We'll use the version after modifications but before adding embeddings
table.restore(version_after_mod)

# Notice we have one more version now, not less!
versions = table.list_versions()
version_count_after_rollback = len(versions)
print(f"Total number of versions after rollback: {version_count_after_rollback}")
// Let's see all versions
const allVersions = await table.listVersions();
allVersions.forEach(v => {
  console.log(`Version ${v.version}, created at ${v.timestamp}`);
});

// Let's roll back to before we added the vector column
// We'll use the version after modifications but before adding embeddings
await table.checkout(versionAfterMod);
await table.restore();

// Notice we have one more version now, not less!
const versionsAfterRollback = await table.listVersions();
const versionCountAfterRollback = versionsAfterRollback.length;
console.log(
  `Total number of versions after rollback: ${versionCountAfterRollback}`,
);

Making Changes from Previous Versions

After restoring a table to an earlier version, you can continue making modifications. In this example, we rolled back to a version before adding embeddings. This allows us to experiment with different embedding models and compare their performance. Here's how to switch to a different model and add new embeddings:

# Let's switch to the all-mpnet-base-v2 model to embed the quotes
model = SentenceTransformer("all-mpnet-base-v2", device="cpu")

# Generate embeddings for each quote and pair with IDs
vectors = model.encode(
    df["quote"].tolist(), convert_to_numpy=True, normalize_embeddings=True
)
vector_dim = vectors[0].shape[0]
print(f"Vector dimension: {vector_dim}")

# Add IDs to vectors array with proper column names
vectors_with_ids = [
    {"id": i + 1, "vector_mpnet": vec.tolist()} for i, vec in enumerate(vectors)
]

# Add vector column and merge data
table.add_columns(
    {"vector_mpnet": f"arrow_cast(NULL, 'FixedSizeList({vector_dim}, Float32)')"}
)

table.merge_insert(
    "id"
).when_matched_update_all().when_not_matched_insert_all().execute(vectors_with_ids)

# Check versions after schema change
versions = table.list_versions()
version_count_after_alter_embed = len(versions)
version_after_alter_embed = table.version
print(
    f"Number of versions after switching model: {version_count_after_alter_embed}"
)
print(f"Current version: {version_after_alter_embed}")

# The table should now include a vector_mpnet column containing
# embeddings generated by the all-mpnet-base-v2 model
print(table.schema)
try {
  // Let's switch to the all-mpnet-base-v2 model to embed the quotes
  console.log("Generating embeddings with transformers...");
  const { pipeline } = await import("@xenova/transformers");
  const extractor = await pipeline(
    "feature-extraction",
    "Xenova/all-mpnet-base-v2",
  );

  // Generate embeddings for all quotes
  const quotes = df.map((row) => row.quote);
  const outputs = await Promise.all(
    quotes.map((quote) =>
      extractor(quote, {
        pooling: "mean",
        normalize: true,
      }),
    ),
  );
  const embeddings = outputs.map((output) => Array.from(output.data));
  vectorDim = embeddings[0].length;
  console.log(`Vector dimension: ${vectorDim}`);

  // Create embedding_with_id for all quotes
  const embedding_with_id = df.map((row, i) => ({
    id: row.id,
    vector_mpnet: embeddings[i],
  }));

  // Add the vector column to the table
  await table.addColumns([
    {
      name: "vector_mpnet",
      valueSql: `arrow_cast(NULL, 'FixedSizeList(${vectorDim}, Float32)')`,
    },
  ]);

  // Update all rows with their embeddings
  await table
    .mergeInsert("id")
    .whenMatchedUpdateAll()
    .whenNotMatchedInsertAll()
    .execute(embedding_with_id);
} catch (error) {
  console.log(
    "Failed to load transformers, using dummy vectors instead:",
    error,
  );
  // Create dummy embeddings for all quotes
  const dummyEmbeddings = df.map(() => Array(vectorDim).fill(100));
  const embedding_with_id = df.map((row, i) => ({
    id: row.id,
    vector_mpnet: dummyEmbeddings[i],
  }));
  // Add the vector column to the table
  await table.addColumns([
    {
      name: "vector_mpnet",
      valueSql: `arrow_cast(NULL, 'FixedSizeList(${vectorDim}, Float32)')`,
    },
  ]);

  await table
    .mergeInsert("id")
    .whenMatchedUpdateAll()
    .whenNotMatchedInsertAll()
    .execute(embedding_with_id);
}

// Check versions after schema change
const versionsAfterSchemaChange = await table.listVersions();
const versionCountAfterSchemaChange = versionsAfterSchemaChange.length;
console.log(
  `Total number of versions after schema change: ${versionCountAfterSchemaChange}`,
);

// The table should now include a vector_mpnet column containing
// embeddings generated by the all-mpnet-base-v2 model
console.log(await table.schema())

Delete Data From the Table

# Go back to the latest version
table.checkout_latest()
# Let's delete data from the table
table.delete("author != 'Richard Daniel Sanchez'")
rows_after_deletion = table.count_rows()
print(f"Number of rows after deletion: {rows_after_deletion}")
// Go back to the latest version
await table.checkoutLatest();

// Let's delete data from the table
await table.delete("author != 'Richard Daniel Sanchez'");
const rowsAfterDeletion = await table.countRows();
console.log(`Number of rows after deletion: ${rowsAfterDeletion}`);

Version History and Operations

Throughout this guide, we've demonstrated various operations that create new versions in LanceDB. Here's a summary of the version history we created:

  1. Initial Creation (v1): Created table with quotes data and basic schema
  2. First Update (v2): Changed "Richard" to "Richard Daniel Sanchez"
  3. Data Append (v3): Added new quotes from both characters
  4. Schema Evolution (v4): Added vector_minilm column for embeddings
  5. Embedding Merge (v5): Populated vector_minilm with embeddings
  6. Version Rollback (v6): Restored to v3 (pre-vector state)
  7. Alternative Schema (v7): Added vector_mpnet column
  8. Alternative Merge (v8): Populated vector_mpnet embeddings
  9. Data Cleanup (v9): Kept only Richard Daniel Sanchez quotes

Each version represents a distinct state of your data, allowing you to:

  • Track changes over time
  • Compare different embedding strategies
  • Revert to previous states
  • Maintain data lineage for ML reproducibility

System Operations

System operations like index updates and table compaction automatically increment the table version number. These background processes are tracked in the version history, though their version numbers are omitted from this example for clarity.