vectordb / Exports
vectordb
Table of contents
Enumerations
Classes
Interfaces
- AwsCredentials
- CleanupStats
- ColumnAlteration
- CompactionMetrics
- CompactionOptions
- Connection
- ConnectionOptions
- CreateTableOptions
- EmbeddingFunction
- IndexStats
- IvfPQIndexConfig
- MergeInsertArgs
- Table
- UpdateArgs
- UpdateSqlArgs
- VectorIndex
- WriteOptions
Type Aliases
Functions
Type Aliases
VectorIndexParams
Ζ¬ VectorIndexParams: IvfPQIndexConfig
Defined in
Functions
connect
βΈ connect(uri
): Promise
\<Connection
>
Connect to a LanceDB instance at the given URI.
Accepted formats:
/path/to/database
- local databases3://bucket/path/to/database
orgs://bucket/path/to/database
- database on cloud storagedb://host:port
- remote database (LanceDB cloud)
Parameters
Name | Type | Description |
---|---|---|
uri |
string |
The uri of the database. If the database uri starts with db:// then it connects to a remote database. |
Returns
Promise
\<Connection
>
See
ConnectionOptions for more details on the URI format.
Defined in
βΈ connect(opts
): Promise
\<Connection
>
Connect to a LanceDB instance with connection options.
Parameters
Name | Type | Description |
---|---|---|
opts |
Partial \<ConnectionOptions > |
The ConnectionOptions to use when connecting to the database. |
Returns
Promise
\<Connection
>
Defined in
convertToTable
βΈ convertToTable\<T
>(data
, embeddings?
, makeTableOptions?
): Promise
\<ArrowTable
>
Type parameters
Name |
---|
T |
Parameters
Name | Type |
---|---|
data |
Record \<string , unknown >[] |
embeddings? |
EmbeddingFunction \<T > |
makeTableOptions? |
Partial \<MakeArrowTableOptions > |
Returns
Promise
\<ArrowTable
>
Defined in
isWriteOptions
βΈ isWriteOptions(value
): value is WriteOptions
Parameters
Name | Type |
---|---|
value |
any |
Returns
value is WriteOptions
Defined in
makeArrowTable
βΈ makeArrowTable(data
, options?
): ArrowTable
An enhanced version of the makeTable function from Apache Arrow that supports nested fields and embeddings columns.
This function converts an array of Record
Note that it currently does not support nulls.
If a schema is provided then it will be used to determine the resulting array types. Fields will also be reordered to fit the order defined by the schema.
If a schema is not provided then the types will be inferred and the field order will be controlled by the order of properties in the first record.
If the input is empty then a schema must be provided to create an empty table.
When a schema is not specified then data types will be inferred. The inference rules are as follows:
- boolean => Bool
- number => Float64
- String => Utf8
- Buffer => Binary
- Record
=> Struct - Array
=> List
Parameters
Name | Type | Description |
---|---|---|
data |
Record \<string , any >[] |
input data |
options? |
Partial \<MakeArrowTableOptions > |
options to control the makeArrowTable call. |
Returns
ArrowTable
Example
import { fromTableToBuffer, makeArrowTable } from "../arrow";
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
const schema = new Schema([
new Field("a", new Int32()),
new Field("b", new Float32()),
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
]);
const table = makeArrowTable([
{ a: 1, b: 2, c: [1, 2, 3] },
{ a: 4, b: 5, c: [4, 5, 6] },
{ a: 7, b: 8, c: [7, 8, 9] },
], { schema });
By default it assumes that the column named vector
is a vector column
and it will be converted into a fixed size list array of type float32.
The vectorColumns
option can be used to support other vector column
names and data types.
const schema = new Schema([
new Field("a", new Float64()),
new Field("b", new Float64()),
new Field(
"vector",
new FixedSizeList(3, new Field("item", new Float32()))
),
]);
const table = makeArrowTable([
{ a: 1, b: 2, vector: [1, 2, 3] },
{ a: 4, b: 5, vector: [4, 5, 6] },
{ a: 7, b: 8, vector: [7, 8, 9] },
]);
assert.deepEqual(table.schema, schema);
You can specify the vector column types and names using the options as well
const schema = new Schema([
new Field('a', new Float64()),
new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
]);
const table = makeArrowTable([
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
], {
vectorColumns: {
vec1: { type: new Float16() },
vec2: { type: new Float16() }
}
}
assert.deepEqual(table.schema, schema)