import shutil

import lance
import numpy as np
import pandas as pd
import pyarrow as pa

Creating datasets

Via pyarrow it’s really easy to create lance datasets

Create a dataframe

df = pd.DataFrame({"a": [5]})
df
a
0 5

Write it to lance

shutil.rmtree("/tmp/test.lance", ignore_errors=True)

dataset = lance.write_dataset(df, "/tmp/test.lance")
dataset.to_table().to_pandas()
a
0 5

Converting from parquet

shutil.rmtree("/tmp/test.parquet", ignore_errors=True)
shutil.rmtree("/tmp/test.lance", ignore_errors=True)

tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, "/tmp/test.parquet", format='parquet')

parquet = pa.dataset.dataset("/tmp/test.parquet")
parquet.to_table().to_pandas()
a
0 5

Write to lance in 1 line

dataset = lance.write_dataset(parquet, "/tmp/test.lance")
# make sure it's the same
dataset.to_table().to_pandas()
a
0 5

Versioning

We can append rows

df = pd.DataFrame({"a": [10]})
tbl = pa.Table.from_pandas(df)
dataset = lance.write_dataset(tbl, "/tmp/test.lance", mode="append")

dataset.to_table().to_pandas()
a
0 5
1 10

We can overwrite the data and create a new version

df = pd.DataFrame({"a": [50, 100]})
tbl = pa.Table.from_pandas(df)
dataset = lance.write_dataset(tbl, "/tmp/test.lance", mode="overwrite")
dataset.to_table().to_pandas()
a
0 50
1 100

The old version is still there

dataset.versions()
[{'version': 1,
  'timestamp': datetime.datetime(2024, 8, 15, 21, 22, 31, 453453),
  'metadata': {}},
 {'version': 2,
  'timestamp': datetime.datetime(2024, 8, 15, 21, 22, 35, 475152),
  'metadata': {}},
 {'version': 3,
  'timestamp': datetime.datetime(2024, 8, 15, 21, 22, 45, 32922),
  'metadata': {}}]
lance.dataset('/tmp/test.lance', version=1).to_table().to_pandas()
a
0 5
lance.dataset('/tmp/test.lance', version=2).to_table().to_pandas()
a
0 5
1 10

We can create tags

dataset.tags.create("stable", 2)
dataset.tags.create("nightly", 3)
dataset.tags.list()
{'nightly': {'version': 3, 'manifest_size': 628},
 'stable': {'version': 2, 'manifest_size': 684}}

which can be checked out

lance.dataset('/tmp/test.lance', version="stable").to_table().to_pandas()
a
0 5
1 10

Vectors

Data preparation

For this tutorial let’s use the Sift 1M dataset:

  • Download ANN_SIFT1M from: http://corpus-texmex.irisa.fr/

  • Direct link should be ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz

  • Download and then unzip the tarball

!rm -rf sift* vec_data.lance
!wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
!tar -xzf sift.tar.gz
--2023-02-13 16:54:50--  ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
           => ‘sift.tar.gz’
Resolving ftp.irisa.fr (ftp.irisa.fr)... 131.254.254.45
Connecting to ftp.irisa.fr (ftp.irisa.fr)|131.254.254.45|:21... connected.
Logging in as anonymous ... Logged in!
==> SYST ... done.    ==> PWD ... done.
==> TYPE I ... done.  ==> CWD (1) /local/texmex/corpus ... done.
==> SIZE sift.tar.gz ... 168280445
==> PASV ... done.    ==> RETR sift.tar.gz ... done.
Length: 168280445 (160M) (unauthoritative)

sift.tar.gz         100%[===================>] 160.48M  6.85MB/s    in 36s

2023-02-13 16:55:29 (4.43 MB/s) - ‘sift.tar.gz’ saved [168280445]

Convert it to Lance

from lance.vector import vec_to_table
import struct

uri = "vec_data.lance"

with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * 1000000 * 128])).reshape((1000000, 128))
    dd = dict(zip(range(1000000), data))

table = vec_to_table(dd)
lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)
<lance.dataset.LanceDataset at 0x13859fe20>
uri = "vec_data.lance"
sift1m = lance.dataset(uri)

KNN (no index)

Sample 100 vectors as query vectors

import duckdb
# if this segfaults make sure duckdb v0.7+ is installed
samples = duckdb.query("SELECT vector FROM sift1m USING SAMPLE 100").to_df().vector
samples
0     [29.0, 10.0, 1.0, 50.0, 7.0, 89.0, 95.0, 51.0,...
1     [7.0, 5.0, 39.0, 49.0, 17.0, 12.0, 83.0, 117.0...
2     [0.0, 0.0, 0.0, 10.0, 12.0, 31.0, 6.0, 0.0, 0....
3     [0.0, 2.0, 9.0, 1.793662034335766e-43, 30.0, 1...
4     [54.0, 112.0, 16.0, 0.0, 0.0, 7.0, 112.0, 44.0...
                            ...
95    [1.793662034335766e-43, 33.0, 47.0, 28.0, 0.0,...
96    [1.0, 4.0, 2.0, 32.0, 3.0, 7.0, 119.0, 116.0, ...
97    [17.0, 46.0, 12.0, 0.0, 0.0, 3.0, 23.0, 58.0, ...
98    [0.0, 11.0, 30.0, 14.0, 34.0, 7.0, 0.0, 0.0, 1...
99    [20.0, 8.0, 121.0, 98.0, 37.0, 77.0, 9.0, 18.0...
Name: vector, Length: 100, dtype: object

Call nearest neighbors (no ANN index here)

import time

start = time.time()
tbl = sift1m.to_table(columns=["id"], nearest={"column": "vector", "q": samples[0], "k": 10})
end = time.time()

print(f"Time(sec): {end-start}")
print(tbl.to_pandas())
Time(sec): 0.10735273361206055
       id                                             vector    score
0  144678  [29.0, 10.0, 1.0, 50.0, 7.0, 89.0, 95.0, 51.0,...      0.0
1  575538  [2.0, 0.0, 1.0, 42.0, 3.0, 38.0, 152.0, 27.0, ...  76908.0
2  241428  [11.0, 0.0, 2.0, 118.0, 11.0, 108.0, 116.0, 21...  92877.0
3  220788  [0.0, 0.0, 0.0, 95.0, 0.0, 8.0, 133.0, 67.0, 1...  93305.0
4  833796  [1.0, 1.0, 0.0, 23.0, 11.0, 26.0, 140.0, 115.0...  95721.0
5  919065  [1.0, 1.0, 1.0, 42.0, 96.0, 42.0, 126.0, 83.0,...  96632.0
6  741948  [36.0, 9.0, 15.0, 108.0, 17.0, 23.0, 25.0, 55....  96927.0
7  225303  [0.0, 0.0, 3.0, 41.0, 0.0, 2.0, 36.0, 84.0, 68...  97055.0
8  787098  [4.0, 5.0, 7.0, 29.0, 7.0, 1.0, 9.0, 91.0, 33....  97950.0
9  113073  [0.0, 0.0, 0.0, 64.0, 65.0, 30.0, 12.0, 33.0, ...  99572.0

Without the index this is scanning through the whole dataset to compute the distance.

For real-time serving we can do much better with an ANN index

Build index

Now let’s build an index. Lance now supports IVF_PQ, IVF_HNSW_PQ and IVF_HNSW_SQ indexes

NOTE If you’d rather not wait for index build, you can download a version with the index pre-built from here and skip the next cell

%%time

sift1m.create_index(
    "vector",
    index_type="IVF_PQ", # IVF_PQ, IVF_HNSW_PQ and IVF_HNSW_SQ are supported
    num_partitions=256,  # IVF
    num_sub_vectors=16,  # PQ
)
Building vector index: IVF256,PQ16
CPU times: user 2min 23s, sys: 2.77 s, total: 2min 26s
Wall time: 22.7 s
Sample 65536 out of 1000000 to train kmeans of 128 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters
Sample 65536 out of 1000000 to train kmeans of 8 dim, 256 clusters

NOTE If you’re trying this on your own data, make sure your vector (dimensions / num_sub_vectors) % 8 == 0, or else index creation will take much longer than expected due to SIMD misalignment

Try nearest neighbors again with ANN index

Let’s look for nearest neighbors again

sift1m = lance.dataset(uri)
import time

tot = 0
for q in samples:
    start = time.time()
    tbl = sift1m.to_table(nearest={"column": "vector", "q": q, "k": 10})
    end = time.time()
    tot += (end - start)

print(f"Avg(sec): {tot / len(samples)}")
print(tbl.to_pandas())
Avg(sec): 0.0009334301948547364
       id                                             vector         score
0  378825  [20.0, 8.0, 121.0, 98.0, 37.0, 77.0, 9.0, 18.0...  16560.197266
1  143787  [11.0, 24.0, 122.0, 122.0, 53.0, 4.0, 0.0, 3.0...  61714.941406
2  356895  [0.0, 14.0, 67.0, 122.0, 83.0, 23.0, 1.0, 0.0,...  64147.218750
3  535431  [9.0, 22.0, 118.0, 118.0, 4.0, 5.0, 4.0, 4.0, ...  69092.593750
4  308778  [1.0, 7.0, 48.0, 123.0, 73.0, 36.0, 8.0, 4.0, ...  69131.812500
5  222477  [14.0, 73.0, 39.0, 4.0, 16.0, 94.0, 19.0, 8.0,...  69244.195312
6  672558  [2.0, 1.0, 0.0, 11.0, 36.0, 23.0, 7.0, 10.0, 0...  70264.828125
7  365538  [54.0, 43.0, 97.0, 59.0, 34.0, 17.0, 10.0, 15....  70273.710938
8  659787  [10.0, 9.0, 23.0, 121.0, 38.0, 26.0, 38.0, 9.0...  70374.703125
9  603930  [32.0, 32.0, 122.0, 122.0, 70.0, 4.0, 15.0, 12...  70583.375000

NOTE on performance, your actual numbers will vary by your storage. These numbers are run on local disk on an M2 Macbook Air. If you’re querying S3 directly, HDD, or network drives, performance will be slower.

The latency vs recall is tunable via: - nprobes: how many IVF partitions to search - refine_factor: determines how many vectors are retrieved during re-ranking

%%time

sift1m.to_table(
    nearest={
        "column": "vector",
        "q": samples[0],
        "k": 10,
        "nprobes": 10,
        "refine_factor": 5,
    }
).to_pandas()
CPU times: user 2.53 ms, sys: 3.31 ms, total: 5.84 ms
Wall time: 4.18 ms
id vector score
0 144678 [29.0, 10.0, 1.0, 50.0, 7.0, 89.0, 95.0, 51.0,... 0.0
1 575538 [2.0, 0.0, 1.0, 42.0, 3.0, 38.0, 152.0, 27.0, ... 76908.0
2 241428 [11.0, 0.0, 2.0, 118.0, 11.0, 108.0, 116.0, 21... 92877.0
3 220788 [0.0, 0.0, 0.0, 95.0, 0.0, 8.0, 133.0, 67.0, 1... 93305.0
4 833796 [1.0, 1.0, 0.0, 23.0, 11.0, 26.0, 140.0, 115.0... 95721.0
5 919065 [1.0, 1.0, 1.0, 42.0, 96.0, 42.0, 126.0, 83.0,... 96632.0
6 741948 [36.0, 9.0, 15.0, 108.0, 17.0, 23.0, 25.0, 55.... 96927.0
7 225303 [0.0, 0.0, 3.0, 41.0, 0.0, 2.0, 36.0, 84.0, 68... 97055.0
8 787098 [4.0, 5.0, 7.0, 29.0, 7.0, 1.0, 9.0, 91.0, 33.... 97950.0
9 113073 [0.0, 0.0, 0.0, 64.0, 65.0, 30.0, 12.0, 33.0, ... 99572.0

q => sample vector

k => how many neighbors to return

nprobes => how many partitions (in the coarse quantizer) to probe

refine_factor => controls “re-ranking”. If k=10 and refine_factor=5 then retrieve 50 nearest neighbors by ANN and re-sort using actual distances then return top 10. This improves recall without sacrificing performance too much

NOTE the latencies above include file io as lance currently doesn’t hold anything in memory. Along with index building speed, creating a purely in memory version of the dataset would make the biggest impact on performance.

Features and vector can be retrieved together

Usually we have other feature or metadata columns that need to be stored and fetched together. If you’re managing data and the index separately, you have to do a bunch of annoying plumbing to put stuff together. With Lance it’s a single call

tbl = sift1m.to_table()
tbl = tbl.append_column("item_id", pa.array(range(len(tbl))))
tbl = tbl.append_column("revenue", pa.array((np.random.randn(len(tbl))+5)*1000))
tbl.to_pandas()
id vector item_id revenue
0 0 [0.0, 16.0, 35.0, 5.0, 32.0, 31.0, 14.0, 10.0,... 0 5950.436925
1 1 [1.8e-43, 14.0, 35.0, 19.0, 20.0, 3.0, 1.0, 13... 1 4680.298627
2 2 [33.0, 1.8e-43, 0.0, 1.0, 5.0, 3.0, 44.0, 40.0... 2 5342.593212
3 3 [23.0, 10.0, 1.8e-43, 12.0, 47.0, 14.0, 25.0, ... 3 5080.994002
4 4 [27.0, 29.0, 21.0, 1.8e-43, 1.0, 1.0, 0.0, 0.0... 4 4977.299308
... ... ... ... ...
999995 999995 [8.0, 9.0, 5.0, 0.0, 10.0, 39.0, 72.0, 68.0, 3... 999995 4928.768010
999996 999996 [3.0, 28.0, 55.0, 29.0, 35.0, 12.0, 1.0, 2.0, ... 999996 5056.264199
999997 999997 [0.0, 13.0, 41.0, 72.0, 40.0, 9.0, 0.0, 0.0, 0... 999997 5930.547635
999998 999998 [41.0, 121.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0, 24... 999998 5985.139759
999999 999999 [2.0, 4.0, 8.0, 8.0, 26.0, 72.0, 63.0, 0.0, 0.... 999999 5008.962686

1000000 rows × 4 columns

sift1m = lance.write_dataset(tbl, uri, mode="overwrite")
sift1m.to_table(columns=["revenue"], nearest={"column": "vector", "q": samples[0], "k": 10}).to_pandas()
revenue vector score
0 2994.968781 [29.0, 10.0, 1.0, 50.0, 7.0, 89.0, 95.0, 51.0,... 0.0
1 4231.026305 [2.0, 0.0, 1.0, 42.0, 3.0, 38.0, 152.0, 27.0, ... 76908.0
2 3340.900287 [11.0, 0.0, 2.0, 118.0, 11.0, 108.0, 116.0, 21... 92877.0
3 4339.588996 [0.0, 0.0, 0.0, 95.0, 0.0, 8.0, 133.0, 67.0, 1... 93305.0
4 5141.730799 [1.0, 1.0, 0.0, 23.0, 11.0, 26.0, 140.0, 115.0... 95721.0
5 4518.194820 [1.0, 1.0, 1.0, 42.0, 96.0, 42.0, 126.0, 83.0,... 96632.0
6 3383.586889 [36.0, 9.0, 15.0, 108.0, 17.0, 23.0, 25.0, 55.... 96927.0
7 5496.905675 [0.0, 0.0, 3.0, 41.0, 0.0, 2.0, 36.0, 84.0, 68... 97055.0
8 5298.669719 [4.0, 5.0, 7.0, 29.0, 7.0, 1.0, 9.0, 91.0, 33.... 97950.0
9 6742.810395 [0.0, 0.0, 0.0, 64.0, 65.0, 30.0, 12.0, 33.0, ... 99572.0